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ABSTRACT
Robotic systems have been increasingly employed in everyday tasks.
Considering that software plays a crucial point in robot systems,
to investigate how software engineering concepts in a software
quality perspective can improve robotic systems. In this work, we
present a systematic mapping to identify and classify the state-of-
art of software engineering for robotic systems in a quality software
perspective. We selected and systematically analyzed a final set of
35 primary studies extracted from an automated search on Scopus
digital library.

This work presents three main contributions. Firstly, we orga-
nize a catalogue of research studies about software engineering,
more specifically software quality applied in robotic systems. Next,
we systematically analyze software quality areas used in robotic
systems. Finally, we discuss insights into research opportunities and
gaps in software engineering to robotic systems for future studies.

As a result, we observed that there are studies in the robotic
systems area, addressing in a combined way, software engineering
approaches and software quality aspects. The less investigated
software quality aspect is security. Due to this fact, we presented
an overview of the state-of-art on blockchain applying in robotics
systems. Blockchain brings opportunities for changing the ways
that robots interact with humans. Finally, we identify research
opportunities and gaps in software quality on robotic systems,
presenting an overview for future studies.

CCS CONCEPTS
• Software and its engineering→Embedded software; •Com-
puter systems organization→ Embedded systems; Robotics.

KEYWORDS
Robotic systems, software quality, systematic mapping, software
engineering
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1 INTRODUCTION
The use of robotic systems in everyday tasks has grown in the last
years. The robotic applications can be industrial operations, surgi-
cal procedures, infotainment, and home service tasks or mission-
critical. The main reason for this phenomenon is that robots became
“smarter" and cost-effective. The idea is that the robotic systems can
do the same activity more efficiently and effectively than a human
[1].

According to Ford [20], we are in a crucial moment for robotics
because we are living a transition movement. Specialized robots,
built to operate in highly controlled environments on a specific
task, will be replaced to general-purpose robots that can work in a
heterogeneous environment, intermixed with humans, and perform
a broad spectrum of functions. It is expected that the robots start
to replace or to assist human. The robotics systems are becoming
more sophisticated, distributed, and integrated [11].

Using software concepts as Software Engineering (SE) methods,
techniques, and tools through application of systematic, disciplined,
and quantifiable approaches to the development, operation, and
maintenance of software, software engineering has contributed to
improving software development [17]. This fact leads us to affirm
that performing studies on SE for robotic systems is not only essen-
tial but also strategic. As benefits, we can cite: to develop bigger,
faster, cheaper robotic software systems, to make it possible to build
and evolve new robotic software systems [11].

Nevertheless, the main goal of SE is to produce quality software.
Software quality management is an SE area focused on the investi-
gation of practices that can improve quality aspects of a produced
software [45]. Considering that software plays a crucial point in
robot systems, efforts to improve the quality of robotic systems is
important since quality characteristics such as integrity, efficiency,
usability, reliability, or maintainability [26] impact robotic systems
directly.

The goal of this study is to identify, classify, and evaluate state-of-
art on software quality aspects in robotic systems. More specifically,
we intend to (i): identify software quality aspects that have been in-
vestigated by SE and robotic community; and (ii) detect and classify

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456


SERP4IoT’20, July, 2020, Virtual Marcela G. dos Santos, Bianca M. Napoleão, Fabio Petrillo, Darine Ameyed, and Fehmi Jaafar

SE approaches used to address software quality aspects on robotic
systems. To achieve this goal, we performed a systematic mapping
study on software engineering for robotic systems on software
quality perspective. In other words, we systematically extracted
data and analyzed these studies to establish the relation between
software quality and robotic systems.

The main contributions of this study are: (i) a catalogue offer-
ing research studies about software engineerin, more specifically,
software quality applied in robotic systems, (ii) a systematic anal-
ysis of software engineering and software quality areas applied
in robotic systems; and (iii) insights of research opportunities and
gaps in software engineering to robotic systems for future studies.

The audience of this study are (i) researchers interested in hav-
ing an overview and contributing to the research areas addressed
in this study; and (ii) practitioners interested to understand the
research on the application of software engineering and software
quality concepts for robotic systems.

The organization of this work is as follows. Section 2 defines the
concepts of robotic systems, software engineering and software
quality. Section 3 describes in detail the adopted study design. Sec-
tion 4 presents the results from our analysis. Section 5 discusses the
main findings. Section 8 synthesizes the final remarks and future
work.

2 BACKGROUND
2.1 Robotic Systems
A robotic system is a combination of hardware and software com-
ponents as two distinct layers that can be integrated to build a
robot [27]. According to Craig [15], robots can be classified into
two major classes: industrial and mobile robots.

An industrial robot is a robot which is automatically controlled,
re-programmable, multipurposemanipulator programmable in three
or more axes, which can be either fixed in place or mobile for use
in industrial automation applications [24].

Some numbers can show the impact and importance of the global
market of industrial robots. In 2017, 381,000 units of industrial
robots were shipped on a global level. This is an increase of 30%
compared to the previous year. In addition, from 2013 to 2017, the
annual sales volume of industrial robots increased by 114%. Also,
in 2017, the sales value increased by 21% compared to 2016. [41].

Mobile robots are machines which are controlled by software
and sensors to identify their surroundings and move around in their
environment. The mobility brings to the robots an improvement in
the operative capabilities, but on the other hand, the complexity
increase and brings additional challenges concerning safety [4].

The interactions that happen during the execution of the tasks,
a mobile robot can need to interact with the environment, with
other robots or with the human operator. The collaboration with the
human operator is often desirable for complex robotic tasks, such as
navigation and manipulation of objects in hazardous environments.

However, this standard classification has been changed. Accord-
ing to Ford [20], nowadays, there is a transition movement in ro-
botics for special-purpose robots aiming for built robots to operate
in highly controlled environments on a specific task, to general-
purpose robots that can work in a heterogeneous environment, that
interact more and more with humans. These robots, also called

smart robots, are equipped with sensors and intelligent software
and promise to bring a new industrial revolution [4].

In other words, the number of mobile robots (or smart robots)
that have been applied in industrial environments has effectively
increased [37]. The number of total smart robots in the market
is expected to reach USD $7.85 billion by 2020, at an estimated
Compound Annual Growth Rate (CAGR) of 19.2 % between 2015
and 2020 [11].

For our study, we considered all the robotic systems, the indus-
trial manipulators, the mobile robots, and the mobile robots that
are applied in the industry.

2.2 Software Quality
SE provides methods, techniques and tools to produce quality
software, the SE essential and basic goal. International Standard
ISO/IEC 9126 [25] defines software quality as the totality of char-
acteristics of a software product that meet implicit and explicit
needs. Explicit software needs are defined in software requirements
documents. It also regards to the quality of software development
process since the final product must meet client expectations. Im-
plicit software needs are external factors that can be considered
subjective by users, but it can lead to serious consequences; for
example, effectiveness, safety and satisfaction in a specified use
context.

Demand for software quality has motivated a number of re-
searchers to develop software quality models [3, 12, 26]. The McCall
model [26] was developed during the 1970s and continues to be ap-
plied nowadays. This model purposes eleven main factors (quality
characteristics) which have a significant impact on software quality.
They are: Correctness, Reliability, Efficiency, Integrity, Usability,
Maintainability, Testability, Flexibility, Portability, Reusability, and
Interoperability.

3 STUDY DESIGN
This section covers the study design method conducted to under-
stand the state-of-art pertaining software engineering, more specif-
ically, software quality and robot systems.

This study employed a Systematic Mapping (SM) method. Ac-
cording to Kitchenham & Charters [29], a SM study provides a
wide overview of a research area seeking to organize and summa-
rize a quantity of existing evidence regarding a topic of interest.
Accordingly, a SM was appropriate to gather and summarize exist-
ing contributions broadly from SE, including software quality and
robotic systems. We followed well-established guidelines [29, 43]
to perform our SM study.

3.1 Research question
We refined our research goal into one Research Question (RQ):

RQ1:What are software engineering approaches used to address
software quality aspects in the robotic system domain?

The intent of this question is to detect and analyse software
engineering approaches applied to improve software quality aspects
in robotic systems.
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3.2 Search strategy and study selection
The search strategy adopted is automated search. According to [29],
automated search is the most common adopted search strategy to
identify relevant studies for a SM or a Systematic Literature Review
(SLR). In order to perform an automated search, the first step is the
creation of a search query [29]. Our search query is:

((robot*) AND ("software engineering"))

We executed our search query on Scopus digital library consid-
ering three metadata fields: title, abstract and keywords. Scopus
is one of the most commonly used digital library in Computer
Science [35, 59] with more than 60 million records. Scopus digi-
tal library includes papers from several international publishers,
including Cambridge University Press, Institute of Electrical and
Electronics Engineers (IEEE), Nature Publishing Group, Springer,
Wiley-Blackwell and Elsevier.

Following, we define our study selection criteria. The study selec-
tion criteria consist in Inclusion Criteria (IC) and Exclusion Criteria
(EC) elaborated in order to filter our set of studies to answer our
RQs.

The inclusion criteria are:
IC1: The study must be a primary study;
IC2: The paper must be a conference paper or article;
IC2: The study must address software engineering and software

quality aspects applied in robotic systems.
The exclusion criteria are:
EC1: The study published as an abstract;
EC2: The study is not written in English;
EC3: The study is a short paper, keynote, tutorial, challenge and

showcase;
EC4: The study does not present an overview of software engi-

neering and software quality concerning robotics systems.

Figure 1: Overview of the search strategy and study selection
processes

As illustrated in Figure 1, a total of 1723 studies were returned
from the automated search execution. Following we removed con-
ferences announcements and applied the selection criteria (IC and
EC) on title and abstract leading to 192 candidate studies. Next, the
selection criteria were applied on studies full text, resulting in a
final set of 35 included studies.

3.3 Data extraction and synthesis
We aim to identify the relation between software quality and the de-
velopment of robotic systems. To answer our Resarch Question we
created a data extraction form. This form was created as a spread-
sheet with specific fields to support our data extraction activity.

Firstly, we extracted from each included study in the concepts
that regard the main topic addressed by the contribution provided
by each study. It is important to highlight that the fact that in some
cases, there is more than one software quality addressed by the
study, but we decided to highlight the main topic in our study.

Secondly, we combined the set of concepts to obtain repre-
sentative categories. We used the McCall quality model [26] and
Pressman book [45] to guide the major categorization step; both
renowned references in SE field.

As a result from our categorization, “Software Quality for Robotic
Systems” was related to: security, usability, modularity, availability,
resilience, maintainability, safety and reliability. “Software Engi-
neering Approaches for Robotic Systems” were related to: archi-
tecture/design (analysis or presentation of an architecture), cod-
ing(coding or analysis of an implementation), framework/pattern
(coding, analysis or presentation of a framework), model/method
(analysis or presentation of methodology that focuses on creat-
ing and exploiting models) and test (analysis or presentation of
verification and validation).

It is worth to mention that we are not interested in all software
engineering approaches that are applied in robotic systems, but
only in the approaches used together software quality aspects on
the robotic systems. The final list of included studies, their main
addressed topics and software quality aspects are presented in Table
1.

4 RESULTS
This section answers the research question proposed in Section 3
aiming to achieve our study goal.

RQ1:What are software engineering approaches used to address
software quality aspects in the robotic system domain?

We classified our set of studies using the quality software aspects
that are investigated by each study. We used as a basis McCall [26]
software quality model to guide our classification. This analysis
resulted in 9 software quality aspects as shown Figure 2.

Concerning RQ1, it is important to highlight that all studies that
addressed any software quality aspect were also applying at least
one of the fundamental approaches of software engineering as in
shown Figure 3.

We analyzed one by one, the software qualities mapped in our
study to map what main approaches in software engineering are
applied to improve the specific software quality.

4.1 Availability
According to Pressman [45], software availability is the probability
that a program is operating according to requirements at a given
point in time. Two studies in our set addressedAvailability. Natale
et al. [40] show the software architecture of the humanoid robot
and the software engineering best practices used in the research.
The main objective is to address the requirements of the users better
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Table 1: List of included studies

Reference Title Quality Aspect Main topics
[40] The iCub software architecture: Evolution and lessons learned. Availability Architecture/Design
[32] OpenGRASP: A toolkit for robot grasping simulation. Availability Coding
[47] The ROCS framework to support the development of autonomous robots. Modularity Framework/Pattern

[56] A reliability evaluation model of distributed autonomous robotic system
architectures. Reliability Architecture/Design

[30] Development of real-time control software for autonomous mobile robot. Reliability Coding

[5] Fault avoidance in development of robot motion-control software by modeling the
computation. Reliability Model/Method

[53] Modelling Autonomous Resilient Multi-robotic Systems. Resilience Model/Method
[52] Formal development and quantitative assessment of a resilient multi-robotic system. Resilience Model/Method
[13] A knowledge centric approach to conceptualizing robotic solutions. Reusability Architecture/Design

[57] Robot behavior and service-based motion behavior structure design in formation
control. Reusability Architecture/Design

[48] Reusability quality metrics for agent-based robot systems. Reusability Architecture/Design

[16] A family of domain-specific languages for specifying civilian missions of multi-robot
systems. Reusability Architecture/Design

[49] Design abstraction and processes in robotics: From code-driven to model-driven
engineering. Reusability Architecture/Design

[60] Runtime models for automatic reorganization of multi-robot systems. Reusability Framework/Pattern.

[18] A software engineering approach for the development of heterogeneous robotic
applications. Reusability Framework/Pattern

[2] A framework-based approach for fault-tolerant service robots. Reusability Framework/Pattern
[8] Stable analysis patterns for robot mobility. Reusability Framework/Pattern
[7] The robotics experience: Beyond components and middleware. Reusability Middleware
[50] Software reuse across robotic platforms: Limiting the effects of diversity. Reusability Model/Method

[28] UML-based service robot software development: A case study. Reusability
Maintainability Architecture/Design

[39] Mechatronic objects for real-time control software development. Reusability
Maintainability Architecture/Design

[6] Orca: A component model and repository. Safety Architecture/Design
[38] A formal approach to AADL model-based software engineering. Safety Architecture/Design
[36] A UML-based method for risk analysis of human-robot interactions Safety Architecture/Design
[23] Safety oriented software engineering process for autonomous robots. Safety Architecture/Design
[14] Modularity and mobility of distributed control software for networked mobile robots. Safety Architecture/Design
[31] Model-driven interactive system design for therapy. robots. Safety Architecture/Design
[22] A modeling framework for software architecture specification and validation. Safety Framework/Pattern

[33] An XML-driven component-based software framework for mobile robotic
applications Reusability Modularity Framework/Pattern

[46] Formal Specification of Robotic Architectures for Experimental Robotics. Safety Framework/Pattern
[51] Simulation and testbeds of autonomous robots in harsh environments. Safety Test
[21] A testing-based approach to ensure the safety of shared resource concurrent systems. Safety Test
[42] Private cloud deployment model in open-source mobile robots ecosystem. Security Framework/Pattern
[34] Evaluating the usability of robot programming toolsets. Usability Coding

[55] Identifying organizational barriers - A case study of usability work when developing
software in the automation industry. Usability Coding

and improve the system availability. The main approach in software
engineering used is Architecture.

The second study that addresses Availability, is the study per-
formed by León et al. [32]. It presents a new simulation toolkit that
addresses not only availability but also extensibility and, interoper-
ability. The main objective is a tool proposal based on a modular
architecture and a designated editor. In this case, the main approach
is Coding.

4.2 Modularity
Modularity is the concept that allows software to be divided into
separately named and addressable components, sometimes called
modules that are integrated to satisfy problem requirements [45].

In our set, just one study addresses the Modularity aspect ex-
plicitly. In [47], Ramos et al. implemented the RoCS (Robotics and
Cognitive Systems) framework for autonomous robots in order to
improve the modularity in robotic systems.

4.3 Reliability
Reliability is evaluated by measuring the frequency and severity
of failure, the accuracy of output results, the mean-time-to-failure,
the ability to recover from failure, and the predictability of the
program [45].

In our set, three studies investigated Reliability on the robotic sys-
tems and applied a software engineering to improve this aspect. In
[56], Xin et al. evaluated the reliability of Distributed Autonomous
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Figure 2: Software quality in robotic Systems

Figure 3: SE main approaches in robotic systems

Robotic System (DARS) architectures systematically, and provided
a reliability evaluation model of DARS architectures. In the other
two studies ([30], [5]) the reliability is improved using the main
approach classified as a Coding in our study.

4.4 Resilience
Resilience is an ability of the system to deliver its services in a
dependable way despite the changes [53]. In our set of studies,
we have two ([53], [52]) that improve the resilience aspect using
Method as a software engineering approach.

4.5 Reusability
The software quality aspect most addressed is Reusability with
14 studies that investigated this aspect in robotic systems. In the
development of software system for robots, the software reuse is
conceived as cut and paste of code lines from program to program.

This practice might work for the development of simple robotic
systems (e.g. for educational purposes) or for unique systems (e.g.
a research prototype) but not for a complex systems, for example,
industrial robots or mobile robots with a high number of sensors
[10]. The SE approaches that addressed were Architecture/Design

(8/14 studies), Framework/Pattern (5/14 studies) and Method(1/14
studies).

Figure 4: Reusability XMain approaches in Robotic Systems

4.6 Safety
Our study shows that safety has been investigated on the robotic
system domain (industrial and mobile robots). According to Bozhi-
noski et al. [4], one the most important reasons for the success of
industrial robotics is its assurance of a high degree of safety.

Robotic systems became smarter and started being integrated in
various aspects of everyday life. Therefore, the assurance of safety
in robotic system in everyday tasks means ensuring that the robot
can move in undiscovered environments and the interaction among
robots/robots and robots/humans happenedwithout physical injury
of people and loss or damage to equipment/property [4].

The majority of the studies that investigated or addressed this
software quality aspect, as in the Safety aspect, has as principal
SE approach Architecture/Design, but also Framework/Pattern and
Test (Figure 5). One of the emergent technology that can improve
safety in robotic systems is blockchain. There are several studies
about the applying of blockchain approaches. For example, [19],
proposed solutions using SC that may provide an infrastructure
for ensuring that robotic swarm systems follow specified legal and
safety regulations.

4.7 Security
One aspect that was drawn to our attention was the fact that only
one study from our set of analysed studies addressed the Security
aspect. Security and quality are entirely and completely linked
[54]. Previous work pointed out that it is necessary to consider the
security, reliability, availability, and dependability all through the
software life cycle [45].

According to [45], to build a secure system, developers must
focus on the quality of the software code, and this focus must begin
during the design phase. Indeed, systems with a high level of quality
are more difficult to attack.
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Figure 5: Safety versusMain approaches in Robotic Systems

4.8 Usability
TheUsability software quality has concerning human factors, over-
all aesthetics, consistency, and documentation. In our study, we
could analyze two studies that improve the usability in robotic
systems. In [34], Mackenzie et al. explore the issues of evaluating
such tool-sets as to their usability. And, in [55], Winter et al. inves-
tigate the connections between usability efforts and organizational
factors.

5 DISCUSSION
Software Quality is one area that yet needs being explored for
the researchers in Robotic Systems as well as the application of
main approaches of Software Engineering. When we initiated our
analysis, we found 192 potential studies that addressed SE. After
applied one of EC that concerning SQ aspects, only 18% of these
studies had the preoccupation of investigating a software quality
concept in robotic systems explicitly. This fact leads us to affirm
that there is this gap in the intersection of software quality and
robotic systems.

Software test, a sub-area in software quality, is investigated only
in 2 of the included studies. As stated by Chung et al. [58], many
robot weak points and problems were discovered by the tests. This
fact emphasizes the need to investigate the software test for robotic
systems further.

Only three studies analyzed or presented methods to develop
software for robotic systems. Vistbakka and Troubitsyna [53] pro-
posed amulti-agent-based formal outlook on ensuring the resilience
of multi-robotic systems. Tarasyuk et al. [52] presented a formal de-
velopment and quantitative assessment of a resilient multi-robotic
system. Smith et al. [50] demonstrated a method for supporting soft-
ware reuse across robotic platforms and hence facilitating improved
software engineering practices. Others methods can be proposed
to support any processing activity during software development.

Software architecture is a high-level view of the software system
in terms of architectural components as computational elements
and connectors that enable interconnections between components
[1]. According to [9], the architecture-centric software development

increases the quality, modularity and reusability, which confirms
our results.

Finally, five studies addressed coding with a focus in coding
development or coding implementation analysis.

6 THREATS TO VALIDITY
Threats to validity usually happen in a mapping study, and it was
not different in our study. We highlight some of those threats and
the mechanism that we applied to address it.

First, the main limitation of this work are the established cate-
gories. We could identify other categories based on other quality
models. However, we opted to follow the McCall model because it
is a renewed quality model in SE. Besides, we could answer other
RQs or even go deeper into our results, but we intend with this SM
to provide a broad overview regarding SE in quality software on
robotic systems.

The second threat to validity is the bias created by the fact that we
executed our search query only on Scopus digital library. However,
because of this, our mapping is preliminary work; consequently,
we decided to start the study only with one digital library and
afterward as a future work, by performing the same query in other
libraries.

7 RELATEDWORK
A systematic review of applying modern software engineering tech-
niques to developing robotic systems was performed by Pons et
al. on a set of 67 primary studies [44]. The authors identified a
growth in the use of approaches, for example, component-based de-
velopment as well as service-based architecture and model-driven
software development. The main difference between our study
and [44] is the designing of the research string. We design our
string to find all studies about robotic and software engineering;
we did not use specific software engineering terms. Pons et al. have
used the terms MDD (Model Driven Development), MDE (Model
Driven Software Engineering), Domain Specific Language, Code
Generation, generative programming, CBD (Component Based De-
velopment), component based, service based, SOA (service oriented
architectures) and Web service.

In [17], Feitosa et al. presented a systematic mapping study on
software engineering in the embedded software and mobile soft-
ware development. Their research focuses on to clarifying how
software engineering is currently applied in embedded software
development. The work performed by Feitosa et al. and in our study
can be considered similar, each cutting the topic of software engi-
neering in robotic systems from different perspectives, but both
performing categorization of the primary studies using fundamen-
tal activities of software engineering. The main difference between
these two studies is that ours considers software quality aspects
and different research questions, thus leading to different results,
findings, and future work.

Ahmad et al. performed a systematic mapping study for robotic
systems on a set of 56 peer-reviewed papers [1]. They did a taxo-
nomically and classified the existing research and systematically
mapped the solutions, frameworks, notations and evaluation meth-
ods to highlight the role of software architecture in robotic systems.
Our study differs from theirs because (i) we specifically focus on
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how software engineering approaches are used to improve software
quality aspects; (ii) the objective of our study is to characterize ex-
isting research on the intersection between software quality and
software engineering approaches.

A systematic mapping study on a set of 58 primary studies was
performed by Bozhinoski et al. [4]. It is state of the art from a
software engineering perspective on existing solutions aiming at
managing safety for mobile robotic systems. The main contribu-
tions of their study are a classification framework for methods or
techniques for managing safety, a map of current software methods
or techniques for software safety for MRSs, an overview about the
emerging challenges and implications for future research, and a
replication package for independent replication and verification
of this study. Our study had a goal to analyzed the intersection
between software quality and software engineering. One of the
software aspects analyze was Safety; for this reason, we can con-
sider both studies to be complementary.

8 CONCLUSIONS
Weperformed a preliminary SM on software engineering for robotic
systems on a software quality perspective.

As the aim of a systematic mapping is to provide mechanism
representative of the entire domain studied, we believe that results
presented in this work show a preliminary state-of-art of software
quality in robotic systems. The significant contribution of this work
is the identification of research areas that need to be investigated
in future work to improve the quality of this study.

As a result, we observed that there are studies in the robotic
systems area addressing in a combined way, software engineering
approaches and software quality aspects. The less investigated
software quality aspect is security.

As future work, we intend to perform our research query in
three other software engineering digital libraries: ACM Digital
Library, IEEE Xplore, and Web of Science. Besides that, we aim to
investigate the problems related to software quality aspects mapped
in this study and suggest other approaches to improve each software
quality.
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