
A Preliminary Systematic Mapping on Software Engineering for
Robotic Systems: A SoftwareQuality Perspective

Marcela G. dos Santos
Bianca M. Napoleão

Fabio Petrillo
marcela.santos1@uqac.ca

bianca.minetto-napoleao1@uqac.ca
fabio@petrillo.com

Université du Québec à Chicoutimi
Chicoutimi, Québec, Canada

Darine Ameyed
darine.ameyed.1@ens.etsmtl.ca

Synchromedia Laboratory,
École de Technologie Supérieure,

Université du Québec
Montreal, Québec, Canada

Fehmi Jaafar
jaafarfe@crim.ca

Computer Research Institute of
Montréal

Montreal, Québec, Canada

ABSTRACT
Robotic systems have been increasingly employed in everyday tasks.
Considering that software plays a crucial point in robot systems,
to investigate how software engineering concepts in a software
quality perspective can improve robotic systems. In this work, we
present a systematic mapping to identify and classify the state-of-
art of software engineering for robotic systems in a quality software
perspective. We selected and systematically analyzed a final set of
35 primary studies extracted from an automated search on Scopus
digital library.

This work presents three main contributions. Firstly, we orga-
nize a catalogue of research studies about software engineering,
more specifically software quality applied in robotic systems. Next,
we systematically analyze software quality areas used in robotic
systems. Finally, we discuss insights into research opportunities and
gaps in software engineering to robotic systems for future studies.

As a result, we observed that there are studies in the robotic
systems area, addressing in a combined way, software engineering
approaches and software quality aspects. The less investigated
software quality aspect is security. Due to this fact, we presented
an overview of the state-of-art on blockchain applying in robotics
systems. Blockchain brings opportunities for changing the ways
that robots interact with humans. Finally, we identify research
opportunities and gaps in software quality on robotic systems,
presenting an overview for future studies.

CCS CONCEPTS
• Software and its engineering→Embedded software; •Com-
puter systems organization→ Embedded systems; Robotics.

KEYWORDS
Robotic systems, software quality, systematic mapping, software
engineering

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SERP4IoT’20, July, 2020, Virtual
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/10.1145/1122445.1122456

ACM Reference Format:
Marcela G. dos Santos, Bianca M. Napoleão, Fabio Petrillo, Darine Ameyed,
and Fehmi Jaafar. 2020. A Preliminary Systematic Mapping on Software
Engineering for Robotic Systems: A Software Quality Perspective. In . ACM,
New York, NY, USA, 8 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
The use of robotic systems in everyday tasks has grown in the last
years. The robotic applications can be industrial operations, surgi-
cal procedures, infotainment, and home service tasks or mission-
critical. The main reason for this phenomenon is that robots became
“smarter" and cost-effective. The idea is that the robotic systems can
do the same activity more efficiently and effectively than a human
[1].

According to Ford [20], we are in a crucial moment for robotics
because we are living a transition movement. Specialized robots,
built to operate in highly controlled environments on a specific
task, will be replaced to general-purpose robots that can work in a
heterogeneous environment, intermixed with humans, and perform
a broad spectrum of functions. It is expected that the robots start
to replace or to assist human. The robotics systems are becoming
more sophisticated, distributed, and integrated [11].

Using software concepts as Software Engineering (SE) methods,
techniques, and tools through application of systematic, disciplined,
and quantifiable approaches to the development, operation, and
maintenance of software, software engineering has contributed to
improving software development [17]. This fact leads us to affirm
that performing studies on SE for robotic systems is not only essen-
tial but also strategic. As benefits, we can cite: to develop bigger,
faster, cheaper robotic software systems, to make it possible to build
and evolve new robotic software systems [11].

Nevertheless, the main goal of SE is to produce quality software.
Software quality management is an SE area focused on the investi-
gation of practices that can improve quality aspects of a produced
software [45]. Considering that software plays a crucial point in
robot systems, efforts to improve the quality of robotic systems is
important since quality characteristics such as integrity, efficiency,
usability, reliability, or maintainability [26] impact robotic systems
directly.

The goal of this study is to identify, classify, and evaluate state-of-
art on software quality aspects in robotic systems. More specifically,
we intend to (i): identify software quality aspects that have been in-
vestigated by SE and robotic community; and (ii) detect and classify

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

SERP4IoT’20, July, 2020, Virtual Marcela G. dos Santos, Bianca M. Napoleão, Fabio Petrillo, Darine Ameyed, and Fehmi Jaafar

SE approaches used to address software quality aspects on robotic
systems. To achieve this goal, we performed a systematic mapping
study on software engineering for robotic systems on software
quality perspective. In other words, we systematically extracted
data and analyzed these studies to establish the relation between
software quality and robotic systems.

The main contributions of this study are: (i) a catalogue offer-
ing research studies about software engineerin, more specifically,
software quality applied in robotic systems, (ii) a systematic anal-
ysis of software engineering and software quality areas applied
in robotic systems; and (iii) insights of research opportunities and
gaps in software engineering to robotic systems for future studies.

The audience of this study are (i) researchers interested in hav-
ing an overview and contributing to the research areas addressed
in this study; and (ii) practitioners interested to understand the
research on the application of software engineering and software
quality concepts for robotic systems.

The organization of this work is as follows. Section 2 defines the
concepts of robotic systems, software engineering and software
quality. Section 3 describes in detail the adopted study design. Sec-
tion 4 presents the results from our analysis. Section 5 discusses the
main findings. Section 8 synthesizes the final remarks and future
work.

2 BACKGROUND
2.1 Robotic Systems
A robotic system is a combination of hardware and software com-
ponents as two distinct layers that can be integrated to build a
robot [27]. According to Craig [15], robots can be classified into
two major classes: industrial and mobile robots.

An industrial robot is a robot which is automatically controlled,
re-programmable, multipurposemanipulator programmable in three
or more axes, which can be either fixed in place or mobile for use
in industrial automation applications [24].

Some numbers can show the impact and importance of the global
market of industrial robots. In 2017, 381,000 units of industrial
robots were shipped on a global level. This is an increase of 30%
compared to the previous year. In addition, from 2013 to 2017, the
annual sales volume of industrial robots increased by 114%. Also,
in 2017, the sales value increased by 21% compared to 2016. [41].

Mobile robots are machines which are controlled by software
and sensors to identify their surroundings and move around in their
environment. The mobility brings to the robots an improvement in
the operative capabilities, but on the other hand, the complexity
increase and brings additional challenges concerning safety [4].

The interactions that happen during the execution of the tasks,
a mobile robot can need to interact with the environment, with
other robots or with the human operator. The collaboration with the
human operator is often desirable for complex robotic tasks, such as
navigation and manipulation of objects in hazardous environments.

However, this standard classification has been changed. Accord-
ing to Ford [20], nowadays, there is a transition movement in ro-
botics for special-purpose robots aiming for built robots to operate
in highly controlled environments on a specific task, to general-
purpose robots that can work in a heterogeneous environment, that
interact more and more with humans. These robots, also called

smart robots, are equipped with sensors and intelligent software
and promise to bring a new industrial revolution [4].

In other words, the number of mobile robots (or smart robots)
that have been applied in industrial environments has effectively
increased [37]. The number of total smart robots in the market
is expected to reach USD $7.85 billion by 2020, at an estimated
Compound Annual Growth Rate (CAGR) of 19.2 % between 2015
and 2020 [11].

For our study, we considered all the robotic systems, the indus-
trial manipulators, the mobile robots, and the mobile robots that
are applied in the industry.

2.2 Software Quality
SE provides methods, techniques and tools to produce quality
software, the SE essential and basic goal. International Standard
ISO/IEC 9126 [25] defines software quality as the totality of char-
acteristics of a software product that meet implicit and explicit
needs. Explicit software needs are defined in software requirements
documents. It also regards to the quality of software development
process since the final product must meet client expectations. Im-
plicit software needs are external factors that can be considered
subjective by users, but it can lead to serious consequences; for
example, effectiveness, safety and satisfaction in a specified use
context.

Demand for software quality has motivated a number of re-
searchers to develop software quality models [3, 12, 26]. The McCall
model [26] was developed during the 1970s and continues to be ap-
plied nowadays. This model purposes eleven main factors (quality
characteristics) which have a significant impact on software quality.
They are: Correctness, Reliability, Efficiency, Integrity, Usability,
Maintainability, Testability, Flexibility, Portability, Reusability, and
Interoperability.

3 STUDY DESIGN
This section covers the study design method conducted to under-
stand the state-of-art pertaining software engineering, more specif-
ically, software quality and robot systems.

This study employed a Systematic Mapping (SM) method. Ac-
cording to Kitchenham & Charters [29], a SM study provides a
wide overview of a research area seeking to organize and summa-
rize a quantity of existing evidence regarding a topic of interest.
Accordingly, a SM was appropriate to gather and summarize exist-
ing contributions broadly from SE, including software quality and
robotic systems. We followed well-established guidelines [29, 43]
to perform our SM study.

3.1 Research question
We refined our research goal into one Research Question (RQ):

RQ1:What are software engineering approaches used to address
software quality aspects in the robotic system domain?

The intent of this question is to detect and analyse software
engineering approaches applied to improve software quality aspects
in robotic systems.

A Preliminary Systematic Mapping on Software Engineering for Robotic Systems: A SoftwareQuality Perspective SERP4IoT’20, July, 2020, Virtual

3.2 Search strategy and study selection
The search strategy adopted is automated search. According to [29],
automated search is the most common adopted search strategy to
identify relevant studies for a SM or a Systematic Literature Review
(SLR). In order to perform an automated search, the first step is the
creation of a search query [29]. Our search query is:

((robot*) AND ("software engineering"))

We executed our search query on Scopus digital library consid-
ering three metadata fields: title, abstract and keywords. Scopus
is one of the most commonly used digital library in Computer
Science [35, 59] with more than 60 million records. Scopus digi-
tal library includes papers from several international publishers,
including Cambridge University Press, Institute of Electrical and
Electronics Engineers (IEEE), Nature Publishing Group, Springer,
Wiley-Blackwell and Elsevier.

Following, we define our study selection criteria. The study selec-
tion criteria consist in Inclusion Criteria (IC) and Exclusion Criteria
(EC) elaborated in order to filter our set of studies to answer our
RQs.

The inclusion criteria are:
IC1: The study must be a primary study;
IC2: The paper must be a conference paper or article;
IC2: The study must address software engineering and software

quality aspects applied in robotic systems.
The exclusion criteria are:
EC1: The study published as an abstract;
EC2: The study is not written in English;
EC3: The study is a short paper, keynote, tutorial, challenge and

showcase;
EC4: The study does not present an overview of software engi-

neering and software quality concerning robotics systems.

Figure 1: Overview of the search strategy and study selection
processes

As illustrated in Figure 1, a total of 1723 studies were returned
from the automated search execution. Following we removed con-
ferences announcements and applied the selection criteria (IC and
EC) on title and abstract leading to 192 candidate studies. Next, the
selection criteria were applied on studies full text, resulting in a
final set of 35 included studies.

3.3 Data extraction and synthesis
We aim to identify the relation between software quality and the de-
velopment of robotic systems. To answer our Resarch Question we
created a data extraction form. This form was created as a spread-
sheet with specific fields to support our data extraction activity.

Firstly, we extracted from each included study in the concepts
that regard the main topic addressed by the contribution provided
by each study. It is important to highlight that the fact that in some
cases, there is more than one software quality addressed by the
study, but we decided to highlight the main topic in our study.

Secondly, we combined the set of concepts to obtain repre-
sentative categories. We used the McCall quality model [26] and
Pressman book [45] to guide the major categorization step; both
renowned references in SE field.

As a result from our categorization, “Software Quality for Robotic
Systems” was related to: security, usability, modularity, availability,
resilience, maintainability, safety and reliability. “Software Engi-
neering Approaches for Robotic Systems” were related to: archi-
tecture/design (analysis or presentation of an architecture), cod-
ing(coding or analysis of an implementation), framework/pattern
(coding, analysis or presentation of a framework), model/method
(analysis or presentation of methodology that focuses on creat-
ing and exploiting models) and test (analysis or presentation of
verification and validation).

It is worth to mention that we are not interested in all software
engineering approaches that are applied in robotic systems, but
only in the approaches used together software quality aspects on
the robotic systems. The final list of included studies, their main
addressed topics and software quality aspects are presented in Table
1.

4 RESULTS
This section answers the research question proposed in Section 3
aiming to achieve our study goal.

RQ1:What are software engineering approaches used to address
software quality aspects in the robotic system domain?

We classified our set of studies using the quality software aspects
that are investigated by each study. We used as a basis McCall [26]
software quality model to guide our classification. This analysis
resulted in 9 software quality aspects as shown Figure 2.

Concerning RQ1, it is important to highlight that all studies that
addressed any software quality aspect were also applying at least
one of the fundamental approaches of software engineering as in
shown Figure 3.

We analyzed one by one, the software qualities mapped in our
study to map what main approaches in software engineering are
applied to improve the specific software quality.

4.1 Availability
According to Pressman [45], software availability is the probability
that a program is operating according to requirements at a given
point in time. Two studies in our set addressedAvailability. Natale
et al. [40] show the software architecture of the humanoid robot
and the software engineering best practices used in the research.
The main objective is to address the requirements of the users better

SERP4IoT’20, July, 2020, Virtual Marcela G. dos Santos, Bianca M. Napoleão, Fabio Petrillo, Darine Ameyed, and Fehmi Jaafar

Table 1: List of included studies

Reference Title Quality Aspect Main topics
[40] The iCub software architecture: Evolution and lessons learned. Availability Architecture/Design
[32] OpenGRASP: A toolkit for robot grasping simulation. Availability Coding
[47] The ROCS framework to support the development of autonomous robots. Modularity Framework/Pattern

[56] A reliability evaluation model of distributed autonomous robotic system
architectures. Reliability Architecture/Design

[30] Development of real-time control software for autonomous mobile robot. Reliability Coding

[5] Fault avoidance in development of robot motion-control software by modeling the
computation. Reliability Model/Method

[53] Modelling Autonomous Resilient Multi-robotic Systems. Resilience Model/Method
[52] Formal development and quantitative assessment of a resilient multi-robotic system. Resilience Model/Method
[13] A knowledge centric approach to conceptualizing robotic solutions. Reusability Architecture/Design

[57] Robot behavior and service-based motion behavior structure design in formation
control. Reusability Architecture/Design

[48] Reusability quality metrics for agent-based robot systems. Reusability Architecture/Design

[16] A family of domain-specific languages for specifying civilian missions of multi-robot
systems. Reusability Architecture/Design

[49] Design abstraction and processes in robotics: From code-driven to model-driven
engineering. Reusability Architecture/Design

[60] Runtime models for automatic reorganization of multi-robot systems. Reusability Framework/Pattern.

[18] A software engineering approach for the development of heterogeneous robotic
applications. Reusability Framework/Pattern

[2] A framework-based approach for fault-tolerant service robots. Reusability Framework/Pattern
[8] Stable analysis patterns for robot mobility. Reusability Framework/Pattern
[7] The robotics experience: Beyond components and middleware. Reusability Middleware
[50] Software reuse across robotic platforms: Limiting the effects of diversity. Reusability Model/Method

[28] UML-based service robot software development: A case study. Reusability
Maintainability Architecture/Design

[39] Mechatronic objects for real-time control software development. Reusability
Maintainability Architecture/Design

[6] Orca: A component model and repository. Safety Architecture/Design
[38] A formal approach to AADL model-based software engineering. Safety Architecture/Design
[36] A UML-based method for risk analysis of human-robot interactions Safety Architecture/Design
[23] Safety oriented software engineering process for autonomous robots. Safety Architecture/Design
[14] Modularity and mobility of distributed control software for networked mobile robots. Safety Architecture/Design
[31] Model-driven interactive system design for therapy. robots. Safety Architecture/Design
[22] A modeling framework for software architecture specification and validation. Safety Framework/Pattern

[33] An XML-driven component-based software framework for mobile robotic
applications Reusability Modularity Framework/Pattern

[46] Formal Specification of Robotic Architectures for Experimental Robotics. Safety Framework/Pattern
[51] Simulation and testbeds of autonomous robots in harsh environments. Safety Test
[21] A testing-based approach to ensure the safety of shared resource concurrent systems. Safety Test
[42] Private cloud deployment model in open-source mobile robots ecosystem. Security Framework/Pattern
[34] Evaluating the usability of robot programming toolsets. Usability Coding

[55] Identifying organizational barriers - A case study of usability work when developing
software in the automation industry. Usability Coding

and improve the system availability. The main approach in software
engineering used is Architecture.

The second study that addresses Availability, is the study per-
formed by León et al. [32]. It presents a new simulation toolkit that
addresses not only availability but also extensibility and, interoper-
ability. The main objective is a tool proposal based on a modular
architecture and a designated editor. In this case, the main approach
is Coding.

4.2 Modularity
Modularity is the concept that allows software to be divided into
separately named and addressable components, sometimes called
modules that are integrated to satisfy problem requirements [45].

In our set, just one study addresses the Modularity aspect ex-
plicitly. In [47], Ramos et al. implemented the RoCS (Robotics and
Cognitive Systems) framework for autonomous robots in order to
improve the modularity in robotic systems.

4.3 Reliability
Reliability is evaluated by measuring the frequency and severity
of failure, the accuracy of output results, the mean-time-to-failure,
the ability to recover from failure, and the predictability of the
program [45].

In our set, three studies investigated Reliability on the robotic sys-
tems and applied a software engineering to improve this aspect. In
[56], Xin et al. evaluated the reliability of Distributed Autonomous

A Preliminary Systematic Mapping on Software Engineering for Robotic Systems: A SoftwareQuality Perspective SERP4IoT’20, July, 2020, Virtual

Figure 2: Software quality in robotic Systems

Figure 3: SE main approaches in robotic systems

Robotic System (DARS) architectures systematically, and provided
a reliability evaluation model of DARS architectures. In the other
two studies ([30], [5]) the reliability is improved using the main
approach classified as a Coding in our study.

4.4 Resilience
Resilience is an ability of the system to deliver its services in a
dependable way despite the changes [53]. In our set of studies,
we have two ([53], [52]) that improve the resilience aspect using
Method as a software engineering approach.

4.5 Reusability
The software quality aspect most addressed is Reusability with
14 studies that investigated this aspect in robotic systems. In the
development of software system for robots, the software reuse is
conceived as cut and paste of code lines from program to program.

This practice might work for the development of simple robotic
systems (e.g. for educational purposes) or for unique systems (e.g.
a research prototype) but not for a complex systems, for example,
industrial robots or mobile robots with a high number of sensors
[10]. The SE approaches that addressed were Architecture/Design

(8/14 studies), Framework/Pattern (5/14 studies) and Method(1/14
studies).

Figure 4: Reusability XMain approaches in Robotic Systems

4.6 Safety
Our study shows that safety has been investigated on the robotic
system domain (industrial and mobile robots). According to Bozhi-
noski et al. [4], one the most important reasons for the success of
industrial robotics is its assurance of a high degree of safety.

Robotic systems became smarter and started being integrated in
various aspects of everyday life. Therefore, the assurance of safety
in robotic system in everyday tasks means ensuring that the robot
can move in undiscovered environments and the interaction among
robots/robots and robots/humans happenedwithout physical injury
of people and loss or damage to equipment/property [4].

The majority of the studies that investigated or addressed this
software quality aspect, as in the Safety aspect, has as principal
SE approach Architecture/Design, but also Framework/Pattern and
Test (Figure 5). One of the emergent technology that can improve
safety in robotic systems is blockchain. There are several studies
about the applying of blockchain approaches. For example, [19],
proposed solutions using SC that may provide an infrastructure
for ensuring that robotic swarm systems follow specified legal and
safety regulations.

4.7 Security
One aspect that was drawn to our attention was the fact that only
one study from our set of analysed studies addressed the Security
aspect. Security and quality are entirely and completely linked
[54]. Previous work pointed out that it is necessary to consider the
security, reliability, availability, and dependability all through the
software life cycle [45].

According to [45], to build a secure system, developers must
focus on the quality of the software code, and this focus must begin
during the design phase. Indeed, systems with a high level of quality
are more difficult to attack.

SERP4IoT’20, July, 2020, Virtual Marcela G. dos Santos, Bianca M. Napoleão, Fabio Petrillo, Darine Ameyed, and Fehmi Jaafar

Figure 5: Safety versusMain approaches in Robotic Systems

4.8 Usability
TheUsability software quality has concerning human factors, over-
all aesthetics, consistency, and documentation. In our study, we
could analyze two studies that improve the usability in robotic
systems. In [34], Mackenzie et al. explore the issues of evaluating
such tool-sets as to their usability. And, in [55], Winter et al. inves-
tigate the connections between usability efforts and organizational
factors.

5 DISCUSSION
Software Quality is one area that yet needs being explored for
the researchers in Robotic Systems as well as the application of
main approaches of Software Engineering. When we initiated our
analysis, we found 192 potential studies that addressed SE. After
applied one of EC that concerning SQ aspects, only 18% of these
studies had the preoccupation of investigating a software quality
concept in robotic systems explicitly. This fact leads us to affirm
that there is this gap in the intersection of software quality and
robotic systems.

Software test, a sub-area in software quality, is investigated only
in 2 of the included studies. As stated by Chung et al. [58], many
robot weak points and problems were discovered by the tests. This
fact emphasizes the need to investigate the software test for robotic
systems further.

Only three studies analyzed or presented methods to develop
software for robotic systems. Vistbakka and Troubitsyna [53] pro-
posed amulti-agent-based formal outlook on ensuring the resilience
of multi-robotic systems. Tarasyuk et al. [52] presented a formal de-
velopment and quantitative assessment of a resilient multi-robotic
system. Smith et al. [50] demonstrated a method for supporting soft-
ware reuse across robotic platforms and hence facilitating improved
software engineering practices. Others methods can be proposed
to support any processing activity during software development.

Software architecture is a high-level view of the software system
in terms of architectural components as computational elements
and connectors that enable interconnections between components
[1]. According to [9], the architecture-centric software development

increases the quality, modularity and reusability, which confirms
our results.

Finally, five studies addressed coding with a focus in coding
development or coding implementation analysis.

6 THREATS TO VALIDITY
Threats to validity usually happen in a mapping study, and it was
not different in our study. We highlight some of those threats and
the mechanism that we applied to address it.

First, the main limitation of this work are the established cate-
gories. We could identify other categories based on other quality
models. However, we opted to follow the McCall model because it
is a renewed quality model in SE. Besides, we could answer other
RQs or even go deeper into our results, but we intend with this SM
to provide a broad overview regarding SE in quality software on
robotic systems.

The second threat to validity is the bias created by the fact that we
executed our search query only on Scopus digital library. However,
because of this, our mapping is preliminary work; consequently,
we decided to start the study only with one digital library and
afterward as a future work, by performing the same query in other
libraries.

7 RELATEDWORK
A systematic review of applying modern software engineering tech-
niques to developing robotic systems was performed by Pons et
al. on a set of 67 primary studies [44]. The authors identified a
growth in the use of approaches, for example, component-based de-
velopment as well as service-based architecture and model-driven
software development. The main difference between our study
and [44] is the designing of the research string. We design our
string to find all studies about robotic and software engineering;
we did not use specific software engineering terms. Pons et al. have
used the terms MDD (Model Driven Development), MDE (Model
Driven Software Engineering), Domain Specific Language, Code
Generation, generative programming, CBD (Component Based De-
velopment), component based, service based, SOA (service oriented
architectures) and Web service.

In [17], Feitosa et al. presented a systematic mapping study on
software engineering in the embedded software and mobile soft-
ware development. Their research focuses on to clarifying how
software engineering is currently applied in embedded software
development. The work performed by Feitosa et al. and in our study
can be considered similar, each cutting the topic of software engi-
neering in robotic systems from different perspectives, but both
performing categorization of the primary studies using fundamen-
tal activities of software engineering. The main difference between
these two studies is that ours considers software quality aspects
and different research questions, thus leading to different results,
findings, and future work.

Ahmad et al. performed a systematic mapping study for robotic
systems on a set of 56 peer-reviewed papers [1]. They did a taxo-
nomically and classified the existing research and systematically
mapped the solutions, frameworks, notations and evaluation meth-
ods to highlight the role of software architecture in robotic systems.
Our study differs from theirs because (i) we specifically focus on

A Preliminary Systematic Mapping on Software Engineering for Robotic Systems: A SoftwareQuality Perspective SERP4IoT’20, July, 2020, Virtual

how software engineering approaches are used to improve software
quality aspects; (ii) the objective of our study is to characterize ex-
isting research on the intersection between software quality and
software engineering approaches.

A systematic mapping study on a set of 58 primary studies was
performed by Bozhinoski et al. [4]. It is state of the art from a
software engineering perspective on existing solutions aiming at
managing safety for mobile robotic systems. The main contribu-
tions of their study are a classification framework for methods or
techniques for managing safety, a map of current software methods
or techniques for software safety for MRSs, an overview about the
emerging challenges and implications for future research, and a
replication package for independent replication and verification
of this study. Our study had a goal to analyzed the intersection
between software quality and software engineering. One of the
software aspects analyze was Safety; for this reason, we can con-
sider both studies to be complementary.

8 CONCLUSIONS
Weperformed a preliminary SM on software engineering for robotic
systems on a software quality perspective.

As the aim of a systematic mapping is to provide mechanism
representative of the entire domain studied, we believe that results
presented in this work show a preliminary state-of-art of software
quality in robotic systems. The significant contribution of this work
is the identification of research areas that need to be investigated
in future work to improve the quality of this study.

As a result, we observed that there are studies in the robotic
systems area addressing in a combined way, software engineering
approaches and software quality aspects. The less investigated
software quality aspect is security.

As future work, we intend to perform our research query in
three other software engineering digital libraries: ACM Digital
Library, IEEE Xplore, and Web of Science. Besides that, we aim to
investigate the problems related to software quality aspects mapped
in this study and suggest other approaches to improve each software
quality.

REFERENCES
[1] Aakash Ahmad and Muhammad Ali Babar. 2017. Software Architectures for

Robotics Systems: A Systematic Mapping Study. CoRR abs/1701.05453 (2017).
arXiv:1701.05453 http://arxiv.org/abs/1701.05453

[2] Heejune Ahn, Woong-Kee Loh, and Woon-Young Yeo. 2012. A Framework-
Based Approach for Fault-Tolerant Service Robots. International Journal of
Advanced Robotic Systems 9, 5 (2012), 200. https://doi.org/10.5772/54023
arXiv:https://doi.org/10.5772/54023

[3] B.W. Boehm, J. R. Brown, andM. Lipow. 1976. Quantitative Evaluation of Software
Quality. In Proceedings of the 2Nd International Conference on Software Engineering
(San Francisco, California, USA) (ICSE ’76). IEEE Computer Society Press, Los
Alamitos, CA, USA, 592–605. http://dl.acm.org/citation.cfm?id=800253.807736

[4] Darko Bozhinoski, Davide Di Ruscio, Ivano Malavolta, Patrizio Pelliccione, and
Ivica Crnkovic. 2019. Safety for mobile robotic systems: A systematic mapping
study from a software engineering perspective. Journal of Systems and Software
151 (2019), 150 – 179. https://doi.org/10.1016/j.jss.2019.02.021

[5] Yury Brodskiy, Robert Wilterdink, Stefano Stramigioli, and Jan Broenink. 2014.
Fault Avoidance in Development of Robot Motion-Control Software by Modeling
the Computation. In Simulation, Modeling, and Programming for Autonomous
Robots, Davide Brugali, Jan F. Broenink, Torsten Kroeger, and Bruce A.MacDonald
(Eds.). Springer International Publishing, Cham, 158–169.

[6] Alex Brooks, Tobias Kaupp, Alexei Makarenko, Stefan Williams, and Anders Ore-
bäck. 2007. Orca: A Component Model and Repository. Springer Berlin Heidelberg,
Berlin, Heidelberg, 231–251.

[7] G Broten, D Mackay, Simon Monckton, and J Collier. 2009. The Robotics Ex-
perience: Beyond Components and Middleware. IEEE Robotics and Automation
Magazine 16 (03 2009), 46–54.

[8] Davide Brugali. 2005. Stable Analysis Patterns for Robot Mobility. In
PPSDR@ICRA.

[9] Davide Brugali, Alex Brooks, Anthony Cowley, Carle Côté, Antonio C.
Domínguez-Brito, Dominic Létourneau, Françis Michaud, and Christian Schlegel.
2007. Trends in Component-Based Robotics. Springer Berlin Heidelberg, Berlin,
Heidelberg, 135–142.

[10] Davide Brugali, Luca Gherardi, Andrea Luzzana, and Alexey Zakharov. 2012. A
Reuse-Oriented Development Process for Component-Based Robotic Systems.
Lecture Notes in Computer Science. https://doi.org/10.1007/978-3-642-34327-8_33

[11] D. Brugali and M. Reggiani. 2005. Software stability in the robotics domain: issues
and challenges. In IRI -2005 IEEE International Conference on Information Reuse
and Integration, Conf, 2005. 585–591. https://doi.org/10.1109/IRI-05.2005.1506537

[12] H. Kaspar M. Lipow G.J. Macleod B.W. Boehm, J.R. Brown and M.J. Merrit. 1984.
Specification of software quality attributes. Prepared by Boeing for RADC.

[13] Subhrojyoti Roy Chaudhuri, Amar Banerjee, N. Swaminathan, Venkatesh Chop-
pella, Arpan Pal, and P. Balamurali. 2019. A Knowledge Centric Approach to
Conceptualizing Robotic Solutions. In Proceedings of the 12th Innovations on
Software Engineering Conference (Formerly Known As India Software Engineer-
ing Conference) (Pune, India) (ISEC’19). ACM, New York, NY, USA, Article 12,
11 pages. https://doi.org/10.1145/3299771.3299782

[14] Liam Cragg, Huosheng Hu, and Norbert Voelker. 2007. Modularity and Mobility
of Distributed Control Software for Networked Mobile Robots. Vol. 30. 459–484.
https://doi.org/10.1007/978-3-540-68951-5_26

[15] John J Craig. 2018. Introduction to Robotics: Mechanics and Control. Hoboken,
NJ.:Pearson.

[16] Davide Di Ruscio, Ivano Malavolta, and Patrizio Pelliccione. 2014. A family of
domain-specific languages for specifying civilian missions of multi-robot systems.
1319 (01 2014), 16–29.

[17] Daniel Feitosa, Katia Felizardo, Lucas Oliveira, Denis Wolf, and Elisa Nakagawa.
2010. Software Engineering in the Embedded Software andMobile Robot Software
Development: A Systematic Mapping.. In SEKE 2010 - Proceedings of the 22nd
International Conference on Software Engineering and Knowledge Engineering.
738–741.

[18] Juan-Antonio Fernández-Madrigal, Cipriano Galindo, Javier González, Elena
Cruz-Martín, and Ana Cruz-Martín. 2008. A software engineering approach for
the development of heterogeneous robotic applications. Robotics and Computer-
Integrated Manufacturing 24, 1 (2008), 150 – 166. https://doi.org/10.1016/j.rcim.
2006.10.002

[19] Eduardo Castelló Ferrer. 2016. The blockchain: a new framework for robotic
swarm systems. CoRR abs/1608.00695 (2016). arXiv:1608.00695 http://arxiv.org/
abs/1608.00695

[20] Martin Ford. 2016. Rise of the Robots: Technology and the Threat of a Jobless Future.
Basic Books; Reprint edition.

[21] Lars-Ake Fredlund, Julio Marino, Raul Alborodo, and Angel Herranz. 2015. A
Testing-Based Approach to Ensure the Safety of Shared Resource Concurrent
Systems. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of
Risk and Reliability 8938 (11 2015). https://doi.org/10.1177/1748006X15614231

[22] Nicolas Gobillot, Charles Lesire, and David Doose. 2014. A Modeling Framework
for Software Architecture Specification and Validation. In Simulation, Modeling,
and Programming for Autonomous Robots, Davide Brugali, Jan F. Broenink, Torsten
Kroeger, and BruceA.MacDonald (Eds.). Springer International Publishing, Cham,
303–314.

[23] V. Gribov and H. Voos. 2013. Safety oriented software engineering process
for autonomous robots. In 2013 IEEE 18th Conference on Emerging Technologies
Factory Automation (ETFA). 1–8. https://doi.org/10.1109/ETFA.2013.6647969

[24] ISO Central Secretary. 2012. Robots and robotic devices — Vocabulary. Standard
ISO/IEC ISO 8373:2012. International Organization for Standardization, Geneva,
CH. https://www.iso.org/standard/55890.html

[25] ISO/IEC. 2001. ISO/IEC 9126. Software engineering – Product quality. ISO/IEC.
[26] P.K. Richards J.A. McCall and G.F. 1978. Factors in Software Quality (3 volumes).

RADC reports.
[27] J. Jackson. 2007. Microsoft robotics studio: A technical introduction. IEEE

Robotics Automation Magazine 14, 4 (Dec 2007), 82–87. https://doi.org/10.1109/M-
RA.2007.905745

[28] Minseong Kim, Suntae Kim, Sooyong Park, Mun-Taek Choi, Munsang Kim, and
Hassan Gomaa. 2008. UML-Based Service Robot Software Development: A Case
Study. Vol. 2006. https://doi.org/10.1145/1134285.1134360

[29] B. Kitchenham and S Charters. 2007. Guidelines for performing Systematic
Literature Reviews in Software Engineering.

[30] Jong-Hyuk Lee, Eu-Teum Jo, Hyeon-A Jeong, and Hyungshin Kim. 2011. Devel-
opment of Real-Time Control Software for Autonomous Mobile Robot. Journal
of Institute of Control, Robotics and Systems 17 (04 2011). https://doi.org/10.5302/
J.ICROS.2011.17.4.336

[31] Moonhee Lee, Hussein Abdullah, and Otman Basir. 2004. Model-Driven Interac-
tive System Design for Therapy Robots. Journal of Intelligent and Robotic Systems

https://arxiv.org/abs/1701.05453
http://arxiv.org/abs/1701.05453
https://doi.org/10.5772/54023
https://arxiv.org/abs/https://doi.org/10.5772/54023
http://dl.acm.org/citation.cfm?id=800253.807736
https://doi.org/10.1016/j.jss.2019.02.021
https://doi.org/10.1007/978-3-642-34327-8_33
https://doi.org/10.1109/IRI-05.2005.1506537
https://doi.org/10.1145/3299771.3299782
https://doi.org/10.1007/978-3-540-68951-5_26
https://doi.org/10.1016/j.rcim.2006.10.002
https://doi.org/10.1016/j.rcim.2006.10.002
https://arxiv.org/abs/1608.00695
http://arxiv.org/abs/1608.00695
http://arxiv.org/abs/1608.00695
https://doi.org/10.1177/1748006X15614231
https://doi.org/10.1109/ETFA.2013.6647969
https://www.iso.org/standard/55890.html
https://doi.org/10.1109/M-RA.2007.905745
https://doi.org/10.1109/M-RA.2007.905745
https://doi.org/10.1145/1134285.1134360
https://doi.org/10.5302/J.ICROS.2011.17.4.336
https://doi.org/10.5302/J.ICROS.2011.17.4.336

SERP4IoT’20, July, 2020, Virtual Marcela G. dos Santos, Bianca M. Napoleão, Fabio Petrillo, Darine Ameyed, and Fehmi Jaafar

39 (04 2004), 345–363. https://doi.org/10.1023/B:JINT.0000026089.28518.b0
[32] Beatriz León, Stefan Ulbrich, Rosen Diankov, Gustavo Puche, Markus Przybylski,

AntonioMorales, TamimAsfour, SamiMoisio, Jeannette Bohg, James Kuffner, and
Rüdiger Dillmann. 2010. OpenGRASP: A Toolkit for Robot Grasping Simulation.
In Simulation, Modeling, and Programming for Autonomous Robots, Noriaki Ando,
Stephen Balakirsky, Thomas Hemker, Monica Reggiani, and Oskar von Stryk
(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 109–120.

[33] X. Li, Y. Jin, and X. Hu. 2006. An XML-Driven Component-Based Software
Framework for Mobile Robotic Applications. In 2006 2nd IEEE/ASME International
Conference on Mechatronics and Embedded Systems and Applications. 1–6. https:
//doi.org/10.1109/MESA.2006.296924

[34] Douglas MacKenzie and Ronald Arkin. 2001. Evaluating the Usability of Robot
Programming Toolsets. The International Journal of Robotics Research 17 (09 2001).
https://doi.org/10.1177/027836499801700405

[35] D. Maplesden, E. Tempero, J. Hosking, and J.G. Grundy. 2015. Performance
analysis for object-oriented software: A systematic mapping. IEEE Transaction
on Software Engineering 41, 7 (2015), 691–710.

[36] DamienMartin-Guillerez, Jérémie Guiochet, David Powell, and Christophe Zanon.
2010. A UML-based method for risk analysis of human-robot interactions. Pro-
ceedings of the 2nd International Workshop on Software Engineering for Resilient
Systems, SERENCE 2010. https://doi.org/10.1145/2401736.2401740

[37] M. Merten and H. Gross. 2008. Highly Adaptable Hardware Architecture for
Scientific and Industrial Mobile Robots. In 2008 IEEE Conference on Robotics,
Automation and Mechatronics. 1130–1135. https://doi.org/10.1109/RAMECH.
2008.4681459

[38] Hana Mkaouar, Bechir Zalila, Jérôme Hugues, and Mohamed Jmaiel. 2019. A
formal approach to AADL model-based software engineering. International
Journal on Software Tools for Technology Transfer (07 Mar 2019). https://doi.org/
10.1007/s10009-019-00513-7

[39] Patrick F. Muir and Jeremy W. Horner. 1998. Mechatronic objects for real-time
control software development. In Sensors and Controls for Intelligent Machining,
Agile Manufacturing, and Mechatronics, Patrick F. Muir, Peter E. Orban, and
Patrick F. Muir (Eds.), Vol. 3518. International Society for Optics and Photonics,
SPIE, 251 – 265. https://doi.org/10.1117/12.332802

[40] Lorenzo Natale, Ali Paikan, Marco Randazzo, and Daniele E. Domenichelli. 2016.
The iCub Software Architecture: Evolution and Lessons Learned. Frontiers in
Robotics and AI 3 (2016), 24. https://doi.org/10.3389/frobt.2016.00024

[41] The International Federation of Robotics. 2018. World Robotics - Industrial Robot
Report 2018 published. https://ifr.org/ifr-press-releases/news/global-industrial-
robot-sales-doubled-over-the-past-five-years

[42] Petri Oksa and Pekka Loula. 2016. Private Cloud Deployment Model in Open-
Source Mobile Robots Ecosystem. In Towards Autonomous Robotic Systems, Lyuba
Alboul, Dana Damian, and Jonathan M. Aitken (Eds.). Springer International
Publishing, Cham, 239–248.

[43] Kai Petersen, Sairam Vakkalanka, and Ludwik Kuzniarz. 2015. Guidelines for
conducting systematic mapping studies in software engineering: An update.
Information and Software Technology 64 (2015), 1 – 18. https://doi.org/10.1016/j.
infsof.2015.03.007

[44] Claudia Pons, Roxana Giandini, and Gabriela Arévalo. 2012. A systematic re-
view of applying modern software engineering techniques to developing robotic
systems. Ingeniería e Investigación 32 (04 2012), 58–63.

[45] Roger Pressman. 2010. Software Engineering: A Practitioner’s Approach (7 ed.).
McGraw-Hill, Inc., New York, NY, USA.

[46] Arunkumar Ramaswamy, Bruno Monsuez, and Adriana Tapus. 2020. Formal Spec-
ification of Robotic Architectures for Experimental Robotics. Springer International
Publishing, Cham, 15–37.

[47] Leonardo Ramos, Gabriel Divino, Esther Colombini, Leonardo Montecchi, and
Breno Bernard França. 2019. The RoCS Framework to Support the Development
of Autonomous Robots.

[48] Cailen Robertson, Ryoma Ohira, Jun Jo, and Bela Stantic. 2019. Reusability
Quality Metrics for Agent-Based Robot Systems. In Robot Intelligence Technology
and Applications 5, Jong-Hwan Kim, Hyun Myung, Junmo Kim, Weiliang Xu,
Eric T Matson, Jin-Woo Jung, and Han-Lim Choi (Eds.). Springer International
Publishing, Cham, 121–134.

[49] Christian Schlegel, Andreas Steck, Davide Brugali, and Alois Knoll. 2010. Design
Abstraction and Processes in Robotics: From Code-Driven to Model-Driven
Engineering. 324–335. https://doi.org/10.1007/978-3-642-17319-6_31

[50] G Smith, R. Smith, and Aster Wardhani. 2005. Software reuse across robotic
platforms: limiting the effects of diversity. 252– 261. https://doi.org/10.1109/
ASWEC.2005.42

[51] Richard S. Stansbury, Eric L. Akers, Hans P. Harmon, and Arvin Agah. 2007.
Simulation and Testbeds of Autonomous Robots in Harsh Environments. Springer
Berlin Heidelberg, Berlin, Heidelberg, 71–92.

[52] Anton Tarasyuk, Inna Pereverzeva, Elena Troubitsyna, and Linas Laibinis. 2013.
Formal Development and Quantitative Assessment of a Resilient Multi-robotic
System. In Software Engineering for Resilient Systems, Anatoliy Gorbenko, Alexan-
der Romanovsky, and Vyacheslav Kharchenko (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 109–124.

[53] Inna Vistbakka and Elena Troubitsyna. 2019. Modelling Autonomous Resilient
Multi-robotic Systems. In Software Engineering for Resilient Systems, Radu Cali-
nescu and Felicita Di Giandomenico (Eds.). Springer International Publishing,
Cham, 29–45.

[54] Huaiqing Wang and Chen Wang. 2003. Taxonomy of security considerations and
software quality. Commun. ACM 46 (06 2003), 75–78. https://doi.org/10.1145/
777313.777315

[55] Jeff Winter, Kari Rönkkö, and Mikko Rissanen. 2014. Identifying organiza-
tional barriers—A case study of usability work when developing software in
the automation industry. Journal of Systems and Software 88 (2014), 54 – 73.
https://doi.org/10.1016/j.jss.2013.09.019

[56] H. Xin, X. Changbin, Z. Qing, and L. Kexin. 2017. A reliability evaluation model of
distributed autonomous robotic system architectures. In 2017 IEEE 15th Interna-
tional Conference on Software Engineering Research, Management and Applications
(SERA). 203–210. https://doi.org/10.1109/SERA.2017.7965729

[57] Fan Yang, Shirong Liu, and Deguo Dong. 2012. Robot Behavior and Service-based
Motion Behavior Structure Design in Formation Control. Robot 34 (01 2012), 120.
https://doi.org/10.3724/SPJ.1218.2012.00120

[58] Yun Koo Chung and Sun-Myung Hwang. 2007. Software testing for intelligent
robots. In 2007 International Conference on Control, Automation and Systems.
2344–2349. https://doi.org/10.1109/ICCAS.2007.4406752

[59] H. Zhang, B.A. Muhammad, and T. Paolo. 2011. Identifying Relevant Studies in
Software Engineering. Information and Software Technology 53, 6 (2011), 625–637.

[60] Christopher Zhong and Scott A. DeLoach. 2011. Runtime Models for Automatic
Reorganization of Multi-robot Systems. In Proceedings of the 6th International
Symposium on Software Engineering for Adaptive and Self-Managing Systems
(Waikiki, Honolulu, HI, USA) (SEAMS ’11). ACM, New York, NY, USA, 20–29.
https://doi.org/10.1145/1988008.1988012

https://doi.org/10.1023/B:JINT.0000026089.28518.b0
https://doi.org/10.1109/MESA.2006.296924
https://doi.org/10.1109/MESA.2006.296924
https://doi.org/10.1177/027836499801700405
https://doi.org/10.1145/2401736.2401740
https://doi.org/10.1109/RAMECH.2008.4681459
https://doi.org/10.1109/RAMECH.2008.4681459
https://doi.org/10.1007/s10009-019-00513-7
https://doi.org/10.1007/s10009-019-00513-7
https://doi.org/10.1117/12.332802
https://doi.org/10.3389/frobt.2016.00024
https://ifr.org/ifr-press-releases/news/global-industrial-robot-sales-doubled-over-the-past-five-years
https://ifr.org/ifr-press-releases/news/global-industrial-robot-sales-doubled-over-the-past-five-years
https://doi.org/10.1016/j.infsof.2015.03.007
https://doi.org/10.1016/j.infsof.2015.03.007
https://doi.org/10.1007/978-3-642-17319-6_31
https://doi.org/10.1109/ASWEC.2005.42
https://doi.org/10.1109/ASWEC.2005.42
https://doi.org/10.1145/777313.777315
https://doi.org/10.1145/777313.777315
https://doi.org/10.1016/j.jss.2013.09.019
https://doi.org/10.1109/SERA.2017.7965729
https://doi.org/10.3724/SPJ.1218.2012.00120
https://doi.org/10.1109/ICCAS.2007.4406752
https://doi.org/10.1145/1988008.1988012

	Abstract
	1 Introduction
	2 Background
	2.1 Robotic Systems
	2.2 Software Quality

	3 Study Design
	3.1 Research question
	3.2 Search strategy and study selection
	3.3 Data extraction and synthesis

	4 RESULTS
	4.1 Availability
	4.2 Modularity
	4.3 Reliability
	4.4 Resilience
	4.5 Reusability
	4.6 Safety
	4.7 Security
	4.8 Usability

	5 DISCUSSION
	6 THREATS TO VALIDITY
	7 RELATED WORK
	8 CONCLUSIONS
	References

